
EDITED BY John D. Landis

MEGAPROJECTS FOR MEGACITIES

A Comparative Casebook

Edward Elgar Publishing, December 2022

with chapter contributions from David L. Gordon, Ziming Liu, Zhong-Ren Peng, Molly Riddle, Oscar Serpell, Erik Vergel-Tovar, Patricia Warren, Jan Whittington and Anthony G.O. Yeh

Agenda

- 1. Megaprojects Pro & Con
- 2. Book Approach & Organization
- 3. A Brief History in Four Eras
- 4. Four Transportation Megaprojects Up Close
- 5. The Seven Secrets of Megaproject Success

Megaprojects Pro & Con

Conventional Wisdoms

"A plausible argument can be made that the age of urban megaprojects has passed" (Alan Altshuler and David Luberoff writing about Boston's "Big Dig" project in *Megaprojects: The Changing Politics of Urban Public Investments*, 2004)

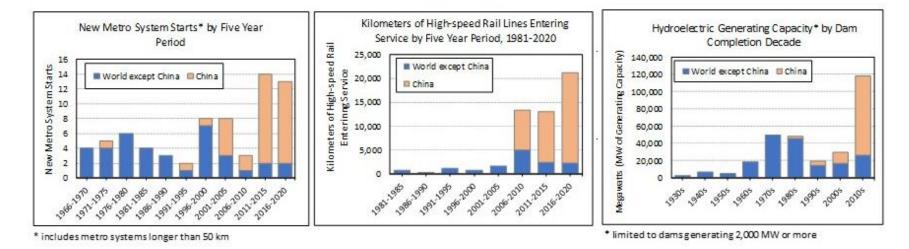
Megaprojects are always "over budget, over time, under benefits, and over and over again." (Bent Flyvbjerg's "Iron Law of Megaprojects", 2014)

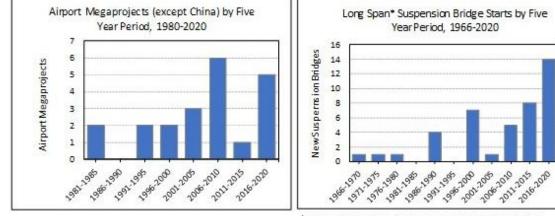
Megaproject Definition

Oxford Handbook of Megaproject Management (2017):

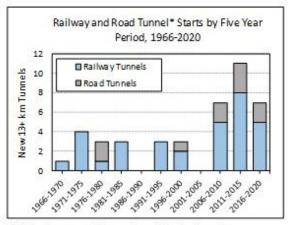
"Megaprojects are large-scale, complex ventures that typically cost **\$1 billion or more**, take many years to develop and build, involve multiple public and private stakeholders, generate potentially transformation impacts, and affect large numbers of people"

Megaproject Pros & Cons

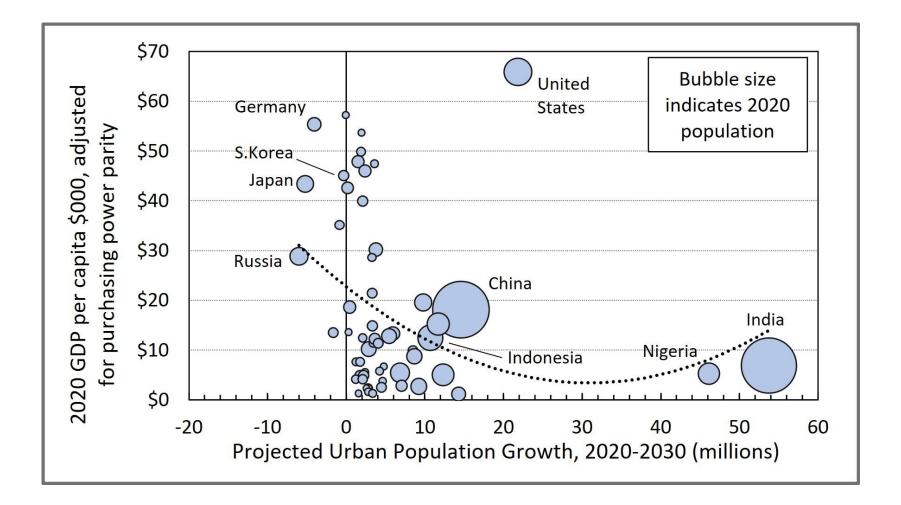

Pros: The Lure of Megaprojects


- Improved planning efficiencies (physical & service area coverage economies of scale)
- Improved design, engineering & construction efficiencies
- Financing efficiencies through economies of scale & better risk-pooling
- Expanded benefit capture and equity opportunities
- Opportunities to promote greater sustainability, resilience and equity
- Network & operations benefits

Cons: Flyvbjerg's Potential Pitfall List


- Excessive planning time horizons/incorrect discount rate
- Lack of relevant project management experience
- Embedded stakeholder conflicts of interest
- Lack of learning opportunities
- Poor quality market and financial analysis
- Principal-agent problems and rentseeking behavior
- Vulnerability to "Black Swan" events
- Positive information & feedback biases

Megaprojects on the Upswing: Global Megaproject Deliveries by Project Type & Period



^{*} limited to bridges with main spans longer than 900 m

* limited to tunnels longer than 13 Km inn length

How Big is the Megaproject Market? The population growth & financing "sweet spot"

Book Approach & Organization

Book Approach

- Organized around a series of carefully selected *common-format comparative case studies* that connect contemporary megaproject **practice** with **performance**.
- **Practice** includes planning, design and engineering, financing, construction and project management, delivery and operation.
- Performance measures include: (i) achieves its goals in a timely and cost-efficient manner; (ii) generates expected benefits and revenues; (iii) promotes synergies and positive externalities/minimizes negative externalities and social costs; (iv) promotes sustainability, resilience and equity; and (v) offers positive and transferable lessons and models for practice.
- Each chapter concludes with a series of project-specific and global practice **lessons and takeaways**.

Case Selection Criteria

- Embody bold ambitions
- Recent: Started or completed after 2010
- Relevant to contemporary practice
- Urban-oriented
- Diversity of project types
- Geographically representative
- Notable design or engineering features
- Diverse financing forms
- Available documentation
- Diversity of outcomes (good, bad and everything in between)
- Clear cause-effect narratives
- Diversity of takeaways

List of the Cases

Urban Transportation Projects

- 1. London Crossrail
- 2. China High-speed Rail
- 3. Four metro projects in Beijing, Shanghai, Guangzhou and Shenzhen
- 4. Six Bus Rapid Transit in South America & Asia

Bridge & Tunnel Projects

- 5. Seattle Alaska Way Viaduct Replacement Project
- 6. Hong Kong-Zhuhai-Macau Bridge

Airport Projects

- 7. Singapore Jewel Changi Airport
- 8. Berlin Brandenburg Airport & LaGuardia Terminal B Reconstruction

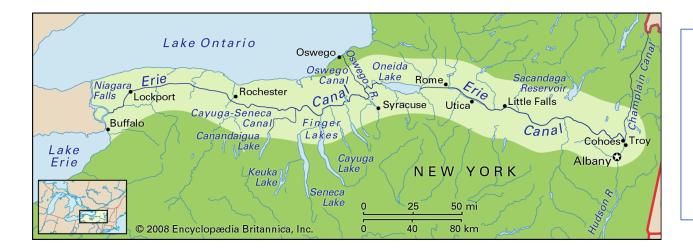
Urban Development Projects

- 9. Canary Wharf London
- 10. HafenCity Hamburg
- 11. Songdo IBD S. Korea

Park & Energy Projects

- 12. Brooklyn Bridge Park NYC
- 13. Five Renewable Energy Projects in the UK, Morocco, India, China and the U.S.

Case Study Locations

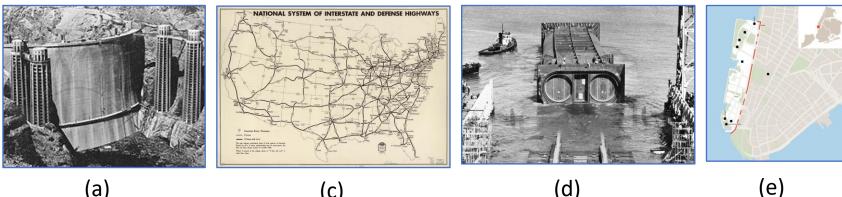


A Brief History in Four Eras

- I. 1825 1915: Promoting Commerce & Trade
- II. 1935 1995: Megaprojects Across America
- III. 1964 2016: Megaprojects Go Global
- IV. 1994 Present: China Takes the Lead

I. 1825 - 1915: Promoting Commerce & Trade

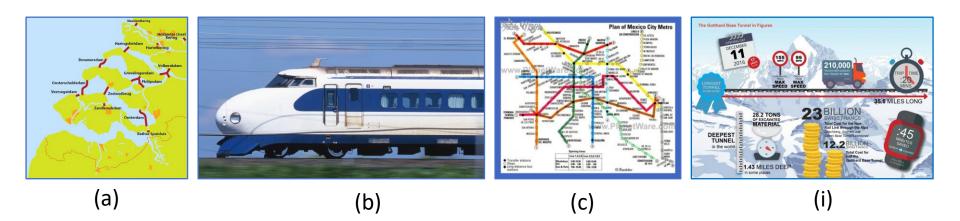
- a) The Erie Canal (1817-1825) The first modern megaproject [Engineered; used new technologies (gunpowder), publicly-financed, intended to expand commercial market & serve broader populace]
- b) The Suez Canal (1859-1869) Making the world smaller
- c) The U.S. Transcontinental Railroad (1862-1869) Opening up a continent
- d) The Gotthard Tunnel under the Swiss Alps (1871, Switzerland) & the Trans-Siberian Railroad (1904, Russia)
- e) The Panama Canal (1903-1914) America Ascendant



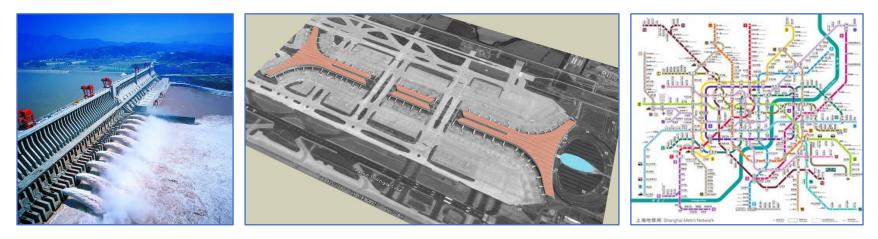
363 miles long, 40 feet wide, 4 feet deep, 173m elevation change, 36 locks. Cost: \$200 million (in 2020 dollars)

II. 1935 - 1995: Megaprojects Across America

- The Bessemer steel revolution: Suspension bridges & skyscrapers
- The Hoover Dam (1928–1936) Redefining the possible a)
- b) TVA (1933 – 1950) – Hydro power & flood control on an industrial scale
- The U.S. Interstate Highway System (1956-1991): The biggest megaproject in C) history
- BART/MARTA/Metro (1966-1984): Reinventing commuter rail for the d) automobile era
- Battery Park City (1969-2005): A new town in town, and the largest downtown e) master-planned community in the United States
- **f**) The Big Dig (1991-2007) – The end of an era


(c)

(d)

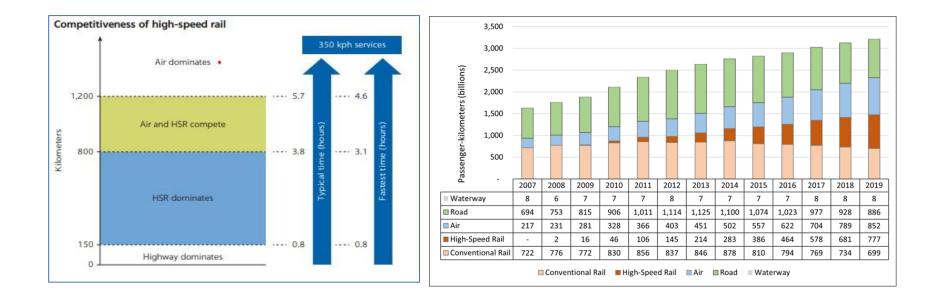

III. 1964 - 2016: Megaprojects Go Global

- a) The Delta Works (The Netherlands, 1958)
- b) The Shinkansen Bullet Train (Japan, 1964)
- c) Mexico City Metro (Mexico, 1969)
- d) TGV-Tres a Grande Vitesse (France, 1981)
- e) Canary Wharf (United Kingdom, 1991)
- f) The Chunnel (United Kingdom/France, 1994)
- g) 3 Asian Super Airports Kansai, Hong Kong, Incheon (Japan, HK, S. Korea)
- h) Akashi Kaikyo Bridge (Japan, 1998)
- i) The Gotthard Base Tunnel (Switzerland, 2016)

IV. 1994 – Present: China Takes the Lead

- a) The Three Gorges Dam (1992-2012): Powering a nation
- b) Beijing Capital International Airport (1999-2008): Beijing builds its showpiece
- c) Shanghai Metro System (1993-present): From global laggard to global leader in 20 years
- d) China High-speed Rail Network (2004-2018): Ambition meets standardization

Four Transportation Megaprojects Up Close


1. China's (Amazing) 40,000 km National High-speed Rail Network

Chapter Authors: Ziming Liu & John Landis

China's National HSR Network by the Numbers

- 37,000-km, national ("8 by 8") HSR network connecting ALL large Chinese cities with 2X 30X daily service.
- Two speed classes of trains (300-350 kph and 200-250 kph).
- 2 billion passengers in 2019, 3x the number traveling by air; and 13x the number of passenger-kms of second-place Japan.
- Cut rail travel times by two-thirds. (e.g., Beijing-Shanghai: 10 hrs. to 4 hrs.)
- Estimated capital cost: US\$ 630 billion.
- 4 years from funding authorization to opening of first line; 16 years to 37,000 km!!!

China's National HSR Network: Rights & Wrongs

What went right?

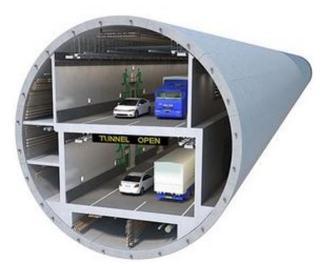
MOST EVERYTHING: (i) National network designed to take advantage of 200 – 1200 km HSR "sweet spot"; (ii) Technology transfer model: turnkey acquisition \rightarrow domestic engineering & manufacturing expertise; (iii) Government doubled down on HSR construction during the GFC; (iv) Planning, engineering, construction and financing procedures all standardized; (v) Capable & driven project management team.

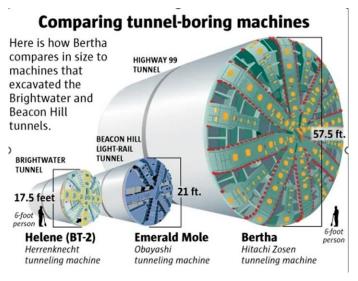
What went wrong?

NOT MUCH. Some lines opened before they were thoroughly tested,
leading to a 2011 train collision in which 40 passengers were killed and 192
were injured. Initial fare structure was not sensitive to line-by-line demand.
No effect on China's economic geography.

China National HSR Network: Summary Scores

	Performance Criteria and Ratings: 4=yes, 3=mostly yes, 2=somewhat, 1=mostly no, 0=no, U=unknown		Seattle Hwy 99 Tunnel	London Crossrail	Berlin Brandenburg Airport	New LaGuardia Terminal B
1	Achieves project goals and objectives in a timely manner	4	4	2	2	4
2	Uses appropriate and cost-efficient technologies	4	4	3	3	4
3	Avoids significant planning, engineering, construction and delivery delays.	4	2	1	0	4
4	Avoids significant design, engineering, construction and delivery cost overruns.	U	3	1	0	4
5	Operating revenues meet projections	2	3	4	3	3
7	Utilizes a robust revenue projection and financing model.	U	2	4	2	3
6	Manages major sources of development and financial risk.	U	2	2	2	3
8	Provides for ongoing operations and management activities.	3	3	3	2	3
9	Promotes synergies, and positive externalities.	3	4	4	1	2
10	Minimizes environmental and social costs.	3	3	3	1	1
11	Incorporates sustainability, resilience, and/or equity concerns.	3	2	2	1	1
12	Generates positive and transferable lessons & experience	3	3	3	1	3
Tot	Total Success Score		35	32	18	35
Per	Percentage Success Score		73%	67%	38%	73%


2. Seattle SR99 Tunnel/ Alaska Way Viaduct Replacement Project

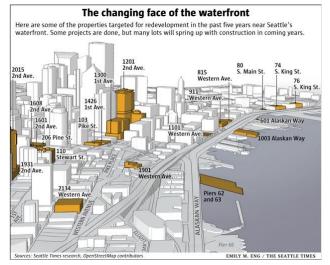


Chapter Authors: Prof. Jan Whittington & Molly Riddle

Seattle SR99 Tunnel Project by the Numbers

- 2.3-mile 58-foot single-bore tunnel beneath downtown Seattle replacing the elevated Alaska Way Viaduct completed in 1959 and damaged in the 2001 Nisqually Earthquake
- Planning started: 2003
- Voter approval of the single-bore design: August 2011
- Boring operations begin: June 2013
- Time-out to repair broken Bertha: Two years (12/2013 12/2015)
- Tunnel opens to traffic: February 2019, three years behind schedule
- Budgeted cost: \$3.1 billion / Final cost \$3.35 billion (7% cost overrun)
- Average daily tunnel traffic (December 2019, after tolling began): 57,000 vehicles 23,000 less than the elevated viaduct.

The SR99 Tunnel Project: Rights & Wrongs


WHAT WENT RIGHT?

- WSDOT's project management and budgeting process.
- The collaborative "Partnership Process" that guided the planning process after Seattle voters rejected WSDOT's preferred replacement concepts in 2007.
- Planning and implementation of the Waterfront Seattle Concept Design by the Central Waterfront Committee, James Corner Field Operations, the Seattle Planning Department, and later, the Friends of the Seattle Waterfront.

WHAT WENT WRONG?

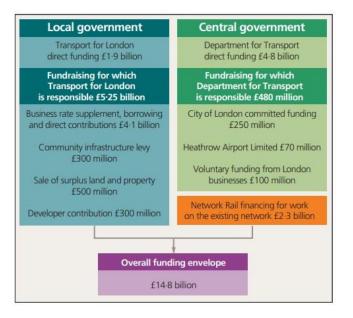
- Planning Round 1 (2003-2007): AWVRP planning process was too technocratic and insufficiently collaborative, resulting in voter rejection of both of WSDOT's preferred alternatives.
- Seattle Mayor Mike McGinn's unwillingness to sign the completed EIS.
- WSDOT 's lack of contingency planning and budgeting for a project using a new boring technology (Bertha) with no backup TBM, and an international tunneling consortium whose partners each had different incentives (and spoke different languages).

Seattle SR 99 Tunnel Project: Summary Scores

	Performance Criteria and Ratings: 4=yes, 3=mostly yes, 2=somewhat, 1=mostly no, 0=no, U=unknown		Seattle SR99 Tunnel	London Crossrail	Berlin Brandenburg Airport	New LaGuardia Terminal B
1	Achieves project goals and objectives in a timely manner	4	4	2	2	4
2	Uses appropriate and cost-efficient technologies	4	4	3	3	4
3	Avoids significant planning, engineering, construction and delivery delays.	4	2	1	0	4
4	Avoids significant design, engineering, construction and delivery cost overruns.	U	3	1	0	4
5	Operating revenues meet projections	2	3	4	3	3
7	Utilizes a robust revenue projection and financing model.	U	2	4	2	3
6	Manages major sources of development and financial risk.	U	2	2	2	3
8	Provides for ongoing operations and management activities.	3	3	3	2	3
9	Promotes synergies, and positive externalities.	3	4	4	1	2
10	Minimizes environmental and social costs.	3	3	3	1	1
11	Incorporates sustainability, resilience, and/or equity concerns.	3	2	2	1	1
12	Generates positive and transferable lessons & experience	3	3	3	1	3
Tot	Total Success Score		35	32	18	35
Per	Percentage Success Score		73%	67%	38%	73%

3. London Crossrail (Elizabeth Line)

Elizabeth line map Reading 🔫 Shenfield Step-free from Datform to street Brentwood Twyford Harold Wood Maidenhead 辛 Gidea Park Romford 辛 Taplow Burnham Chadwell Heath Goodmayes ᆂ Sloug West Hayes & Drayton Harlington Tottenham Liverpool Court Road Farringdon ★ Street ★ Whitechapel Ealing Bond Forest Gate Seven Kings Paddington ***** Street Stratford 🔫 Hanwell Broadway 类 Langle -()--(A)-B llford Southall West Acton Main Line Maryland Manor Park Ealing DIP & City & City + Trains to . Terminals 2.3 Canary Wharf + Heathrow Airpor Custom House for ExCeL Terminal 4 Piccadilly Woolwich Abbey Wood TRANSPORT MAYOR OF LONDON FOR LONDON EVERY JOURNEY MATTERS



Crossrail by the Numbers

- 117 km high-speed metro line connecting Heathrow Airport (and parts west) to central London, Canary Wharf, and London's East End residential communities. Its 21 km central section runs in deep bore tunnels.
- First proposed in the 1940s. After several false starts, construction was approved by Parliament in 2008 at a projected cost of £15.9B (later reduced to £14.8B) Scheduled for completion in 2018.
- Finally opened in 2022 at a cost 30% above the original projection.
- 10 new stations built by different contractors. Entirely new digital signaling and train control technology linked to passenger information system

<u>Selected before and after travel times</u>:

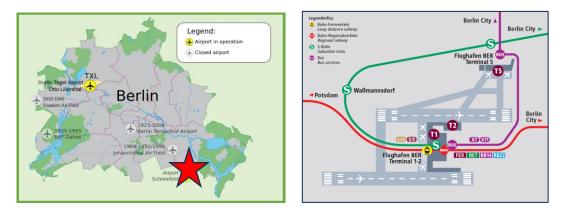
- Paddington to Tottenham Court Road: 20 minutes → 4 minutes
- Bond Street to Whitechapel: 24 minutes → 10 minutes
- Paddington to Canary Wharf: 34 minutes → 17 minutes
- Canary Wharf to Heathrow: 55 minutes → 39 minutes

Crossrail Rights and Wrongs

What went right?

- The UK Government's project approval process requiring project sponsors to fully document and stress test their funding model before approval is granted.
- The overall project concept which centered on shortening travel times between London's business centers as a means of promoting further agglomeration economies and value generation.
- The tunnel boring program.

What went wrong?


- An unproven project management approach that substituted a matrix model (in which contractors coordinate with each other) for a traditional hierarchical control model.
- An overemphasis on trying innovative management approaches.
- Senior executives and project managers in denial about the root causes of project delays and cost overruns.
- Relying on different contractors to build different stations.
- Unresolved management and funding conflicts between the two principal clients: The Department for Transport (DfT) and Transport for London (TfL)

London Crossrail: Summary Scores

	Performance Criteria and Ratings: 4=yes, 3=mostly yes, 2=somewhat, 1=mostly no, 0=no, U=unknown		Seattle Hwy 99 Tunnel	London Crossrail	Berlin Brandenburg Airport	New LaGuardia Terminal B
1	Achieves project goals and objectives in a timely manner	4	4	2	2	4
2	Uses appropriate and cost-efficient technologies	4	4	3	3	4
3	Avoids significant planning, engineering, construction and delivery delays.	4	2	1	0	4
4	Avoids significant design, engineering, construction and delivery cost overruns.	U	3	1	0	4
5	Operating revenues meet projections	2	3	4	3	3
7	Utilizes a robust revenue projection and financing model.	U	2	4	2	3
6	Manages major sources of development and financial risk.	U	2	2	2	3
8	Provides for ongoing operations and management activities.	3	3	4	2	3
9	Promotes synergies, and positive externalities.	3	4	3	1	2
10	Minimizes environmental and social costs.	3	3	3	1	1
11	Incorporates sustainability, resilience, and/or equity concerns.	3	2	3	1	1
12	Generates positive and transferable lessons & experience	3	3	2	1	3
Tot	Total Success Score		35	32	18	35
Pei	Percentage Success Score		73%	67%	38%	73%

4. Two 21st Century Airports: Berlin Brandenburg & LaGuardia Terminal B

Berlin Brandenburg Airport Locator Map and Area Plan

LaGuardia Airport Locator Map and Terminal B Reconstruction Plan

Berlin & LaGuardia by the Numbers

	Berlin Brandenburg Int'l. Airport	LaGuardia Airport Central Terminal B Reconstruction		
Overall Market Size (2015)	3.5M metro area population; 29.5M airport passengers(2 airports); 6% per year passenger growth rate	18.4M metro area population; 124M passengers (3 airports); 2% per year passenger growth rate		
Capacities	360,000 sqM terminal , 41 gates, serving 45 million passengers (max)- replacing Tegel & Schoenfeld Airports	78,000 sqM terminal, 38 gates, serving 17.5 M passengers (max) –		
Lead Sponsors/ Funders	Flughafen Berlin Brandenburg GmbH (FBB), a joint venture of the Berlin and Brandenburg state governments	PPP involving Port Authority of NY & NJ with LaGuardia Gateway Partnership (LGP)		
Approval Given/ Construction Begins/ Promised Opening	1999 / Sept. 2006 / October 2010	2016 / 2016 / 2021 (terminal remained in operation during construction)		
Construction Completed	October 2020 (+10 years)	2021		
Approved Budget	€2.2 billion	\$4 billion		
Estimated Final Cost	€8.2 billion (270% overrun)	\$4 billion		

Berlin & LaGuardia– Rights & Wrongs

New Berlin Brandenburg Airport	LGA Terminal B Reconstruction			
WHAT WENT RIGHT?	WHAT WENT RIGHT?			
Absolutely nothing.	Despite last-minute interference by NY			
WHAT WENT WRONG?	Governor Cuomo, the PA's initial (and excellent) terminal redesign remained in place.			
 Losing PPP bidder initiated a lengthy & costly lawsuit. 	 Governor Cuomo was a strong project champion. 			
 FBB senior managers had no experience managing an airport project, and repeatedly misled sponsors and the public about the project's status. 	• The design, engineering and construction contractors had worked together on airport projects in the past.			
 Contractors hired without a final work program in place. 	 Experienced PA project managers kept the project on schedule and budget. 			
 Subcontractors couldn't effectively coordinate 	• The PPP negotiations went off without a hitch.			
with each other, resulting in normal change orders creating unnecessary bottlenecks.	 All the project partners were committed to keeping the existing terminal open during construction. 			
 Ventilation and fire suppression system didn't work as designed, requiring a costly redesign. 	WHAT WENT WRONG?			
 Terminal design was too inflexible for needs of rapidly changing airline industry. 	 Ongoing uncertainties about the people mover feasibility and use (Funding eventually canceled in 2022). 			

Berlin & LaGuardia: Summary Scores

	Performance Criteria and Ratings: 4=yes, 3=mostly yes, 2=somewhat, 1=mostly no, 0=no, U=unknown		Seattle Hwy 99 Tunnel	London Crossrail	Berlin Brandenburg Airport	New LaGuardia Terminal B
1	Achieves project goals and objectives in a timely manner	4	4	2	2	4
2	Uses appropriate and cost-efficient technologies	4	4	3	3	4
3	Avoids significant planning, engineering, construction and delivery delays.	4	2	1	0	4
4	Avoids significant design, engineering, construction and delivery cost overruns.	U	3	1	0	4
5	Operating revenues meet projections	2	3	4	3	3
7	Utilizes a robust revenue projection and financing model.	U	2	4	2	3
6	Manages major sources of development and financial risk.	U	2	2	2	3
8	Provides for ongoing operations and management activities.	3	3	4	2	3
9	Promotes synergies, and positive externalities.	3	4	3	1	2
10	Minimizes environmental and social costs.	3	3	3	1	1
11	Incorporates sustainability, resilience, and/or equity concerns.	3	2	3	1	1
12	Generates positive and transferable lessons & experience	3	3	2	1	3
Tot	Total Success Score		35	32	18	35
Per	Percentage Success Score		73%	67%	38%	73%

The Seven Secrets of Megaproject Success

The Seven Secrets of Megaproject Success

- Project manager competence and experience matter above all else!!!! (Singapore Jewel Changi & LaGuardia Airports/ Berlin-Brandenburg Airport)
- Project planners and managers should carefully study past projects to learn from experience. (Singapore Changi & BRT/ Strooklyn Bridge Park)
- For multi-site projects, standardization can a source of cost-efficiency and timely delivery. (
 China HSR & City Metros/
 Crossrail)
- Key market assumptions and budgets/schedules should be stress tested. (
 London Crossrail/
 HKZM Bridge)
- Develop contingency scheduling and financing plans for worst-case scenarios.
 (& LaGuardia Airport/ Seattle AWVR Tunnel)